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The flow-induced vibration for an annular leakage-flow system is studied theoretically and
experimentally. The annular leakage-flow system consists of a fixed duct, a flexibly mounted
inner cylinder allowed to move translationally and rotationally inside the duct, and a viscous
fluid flow in the annular passage between the duct and the inner cylinder. A numerical method
is developed to analyze the flutter instability of the flow-induced vibration of the inner
cylinder. In the method, a critical flow rate is introduced to describe the flutter instability. The
experiment on the annular leakage-flow-induced vibration is carried out, and a critical flow
rate of the flutter instability is obtained for some annular leakage-flow systems with different
passage increment ratios as well as the eccentricities. The calculated results are in good
agreement with the experimental results. # 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Flow-inducedvibration has received considerable attention because it has caused much
trouble in many industrial fields. Flow-induced vibration involving very narrow flow
passages, called leakage-flow-induced vibration, has been studied by many researchers,
because some serious accidents were caused by it, especially in nuclear reactors, as seen in
the review by Pa.ııdoussis (1980).
Hobson (1982) studied the stability problem of a flexibly mounted, rigid inner cylinder

in a fixed, rigid outer cylinder. In his work, the fluid force acting on the inner cylinder was
obtained by assuming a very narrow annular clearance, and by neglecting the radial
variation of the fluid velocity. The stability of the inner cylinder was studied by
considering the aerodynamic damping derived from the fluid force. It was thus found that
the aerodynamic damping could be negative when the inlet of the passage was constricted.
0889-9746/02/070909+22 $35.00/0 # 2002 Elsevier Science Ltd. All rights reserved.
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Mateescu & Pa.ııdoussis (1985) considered the problem of a narrow annular passage formed
by a fixed, rigid duct and a rotationally oscillating, rigid center-body, both with axially
variable cross-sections. In their work, based on unsteady potential flow theory, the fluid-
dynamic force acting on the center-body was obtained in terms of the aerodynamic
coefficients of damping, stiffness and inertia. It was found from the theoretical
investigation that the stability of the center-body decreases as the pivot of rotation is
shifted toward the downstream end of the center-body, and that a divergent annular
passage has a destabilizing effect. Arai et al. (1998) studied a similar problem to that by
Mateescu & Pa.ııdoussis using a different approach.
Inada & Hayama (1990a, b) studied one-dimensional leakage-flow-induced vibrations of

a rigid plate supported by coupled, translational and rotational springs in a narrow
tapered passage formed by two fixed plates. In their work, the unsteady fluid force was
obtained in terms proportional to the added inertia, the added damping and the added
stiffness, based on the boundary layer analogy. Then, the critical flow rate was derived by
the Routh-Hurwitz stability criterion. Their study is of particular interest, because a
similar approach is used in the present study to solve the annular leakage-flow-induced
vibration problem.
In the present study, involving an annular leakage-flow system with a fixed duct, a

flexibly mounted inner cylinder is allowed to move translationally and rotationally inside
the duct, and a viscous fluid flows in the annular passage between the duct and the inner
cylinder. The taper angle of the duct and the eccentricity between the duct and the inner
cylinder are also considered, to study the influence of the configuration of the annular
passage on stability. In the theoretical part, two-dimensional basic equations for the
annular leakage-flow system are derived, based on the boundary layer analogy, and the
unsteady fluid force and moment due to the unsteady fluid force acting on the inner
cylinder are obtained by numerical integration. Then, the fluid force and moment are
coupled with the equation of motion of the inner cylinder, and the critical flow rate of the
flutter instability is obtained numerically for the coupled equation. In the experimental
part, an apparatus consisting of an annular leakage-flow system with a fixed duct is used;
specifically a flexibly mounted inner cylinder allowed to move translationally and
rotationally inside the duct, with a fluid flow in the annular passage between the duct and
the inner cylinder. The critical flow rate is measured for some annular leakage-flow
systems with different configurations of the annular flow passage. In Section 4 the critical
flow rate calculated numerically is compared with that measured for different taper angles
of the duct, as well as different eccentricities. The calculated results are in good agreement
with the experimental ones.

2. THEORY

2.1. Model and Basic Equations

An annular leakage-flow system with a rigid duct, a rigid inner cylinder inside the duct,
and a fluid flow in the annular flow passage between the duct and the inner cylinder can be
modeled as shown in Figure 1. Here, the rigid duct is of radius Rd at the inlet of the
passage, and taper angle j; its length Ld is fixed. The rigid inner cylinder is d, radius Rc,
and constant cross-section and length Lc; it is supported by a translational spring and a
rotational spring inside the duct, and allowed to move translationally and rotationally in
the S–S plane. The center of gravity and the rotational pivot of the inner cylinder are
located at Lg and Lp from the inlet of the passage. A viscous fluid flows through the
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annular flow passage formed by the duct and the inner cylinder due to the pressure
difference ðPin � PoutÞ between the inlet and the outlet of the passage. To simplify the
equations of fluid flow in the annular passage, the following assumptions are made: (a) the
fluid is incompressible; (b) the annular clearance between the duct and the inner cylinder is
narrow enough to neglect the flow in the radial direction; (c) the boundary layer analogy
can be applied to the flow in the annular passage. According to assumption (c), the
influence of the wall curvature on the flow can be neglected, and the annular passage can
be treated as a flat one, as shown in Figure 2. Here, the half-circle only of the annular
passage is considered, due to the symmetry. The coordinate system of the flow-field is
defined as follows. The Y-axis is for the axial direction of the annular passage, the Z-axis is
for the radial direction, and the X-axis is for the circumferential direction.
With these assumptions, the equations of motion of the flow in the annular passage can

be written as
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and the equation of continuity of the flow can be written as
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¼ 0; ð3Þ

where r and m are the density and viscosity of fluid, respectively, t is the time, U, V andW
are the flow velocities in the X-, Y- and Z-direction, respectively. Integrating equations
(1)–(3) with respect to Z from 0 to the annular clearance H, we have
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where nk is the kinematic viscosity of the fluid, and Qx and Qy represent the flow rates per
unit width in the circumferential and axial directions, defined by

QX ¼
Z H

0

U dZ; QY ¼
Z H

0

V dZ: ð7Þ

The pressure losses at the inlet and outlet of the passage are assumed to be proportional
to the dynamic pressures of the flow. If the pressure loss factors at the inlet and the outlet
of the passage are denoted by xin and xout, respectively, the boundary conditions at the
inlet and the outlet can be written as

PðX ; 0Þ ¼ Pin � ð1þ xinÞ
rQ2

Y ðX ; 0Þ
2H2ðX ; 0Þ

; PðX ;LÞ ¼ Pout þ xout
rQ2

Y ðX ;LÞ
2H2ðX ;LÞ

: ð8; 9Þ

The structural parameters for the inner cylinder are defined as follows. The mass and
moment of inertia around the pivot are represented by Ms and Is, respectively. The
damping coefficients of the translational and rotational motion are represented by Ct

s and
Cr

s , respectively. The spring constants of the translational and rotational
motions are represented by Kt

s and Kr
s , respectively. If only the fluid force and the

moment due to the fluid force are considered, the equation of motion of the inner cylinder
is written as

Ms ðLg � LpÞMs
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where Ffluid and Mfluid represent the fluid force and fluid moment acting on the inner
cylinder, respectively. When LgaLp, translational and rotational vibrations are coupled to
each other. Besides, the translational and rotational vibrations will be coupled through the
fluid force and the moment due to the fluid force.

2.2. Linearization of the Basic Equations

As presented in the previous section, it is considered that the inner cylinder has a constant
cross-section, the duct has a tapered cross-section, and the inner cylinder is allowed to
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move translationally and rotationally in the symmetric plane S–S. Additionally,
eccentricity between the inner cylinder and the duct is considered. To solve the basic
equations under the hypothetical vibration of the inner cylinder, some assumptions are
made as follows.
(a) The inner cylinder performs a harmonic two-degree-of-freedom vibration involving

translational and rotational motions, described by

EðtÞ

FðtÞ

( )
¼

DE

DF

( )
expðiOtÞ; ð11Þ

where DE and DF represent the amplitudes of the translational and rotational vibrations,
respectively, O is the angular frequency, and i ¼

ffiffiffiffiffiffiffi
�1

p
.

(b) The circumferential steady flow is small enough to be neglected, i.e. %QQX ¼ 0,
compared with the axial steady flow %QQY . This assumption is reasonable for small
eccentricities, and has been validated by the experiments of Ishihara (1994).
(c) The annular clearance, the pressure and the flow rate change with the same angular

frequency O as the inner cylinder, and can be expressed by the sum of a steady component
and an unsteady component, such as

H ¼ %HH � DH expðiOtÞ; P ¼ %PP þ DP expðiOtÞ; ð12; 13Þ

QY ¼ %QQY þ DQY expðiOtÞ; QX ¼ DQX expðiOtÞ ð14; 15Þ

where the overbar denotes the steady components, and the D represents the amplitudes of
unsteady components.
If the annular passage ‘‘increment ratio’’ a is defined by

a ¼
L

H0

p
180

j; ð16Þ

where j degree is the taper angle of the duct, and H0ð¼ Rd � RcÞ is the mean clearance at
the inlet of the passage, the steady clearance %HH and the amplitude of unsteady clearance
%hhðj; kÞ in equation (12) may be written as,

%HH ¼ H0ð1þ aY=LÞ � %EE cos y; ð17Þ

DH ¼ fDE þ ðY � LpÞDFg cos y; ð18Þ

where L is the length from the inlet to the outlet of the passage, and y is the angle from the
S–S plane to any point in the annular passage (see Figure 1).
Substituting equations (12)–(18) into (4)–(9), and retaining the first-order terms from

Taylor expansions with respect to unsteady components, we obtain the linearized form of
the basic equations (4)–(9). Further, introducing the following dimensionless variables and
parameters:
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where Rm ¼ ðRd þ RcÞ=2, we obtain the linearized dimensionless basic equations of the
annular leakage-flow system as,
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2.3. Unsteady Pressure

To numerically solve equations (20)–(24) and thereby obtain the pressure distribution in
the flow passage, discretization of the basic equations is needed. Figure 3 shows the
division of the flow passage, and Figure 4 shows the definitions of the pressure, the
clearance and the flow rate for any point ðj; kÞ. The flow passage is divided by nx identical
sections in the X-direction, and by ny � 1 identical sections in the Y-direction, as shown.
The pressure, clearance and flow rate are defined as follows. Pressure Dpðj; kÞ and
clearance %hhðj; kÞ are constant in the area formed by points (j � 1
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Integrating the basic equations (20)–(24) based on above discretization, and defining
coefficients b1ðj; kÞ2b5ðj; kÞ, we obtain the following equation for the pressure distribution:

Dpðj; kÞ ¼ b1ðj; kÞDpðj; kþ 1Þ þ b2ðj; kÞDpðj; k � 1Þ

þ b3ðj; kÞDpðj þ 1; kÞ þ b4ðj; kÞDpðj � 1; kÞ þ b5ðj; kÞ; ð25Þ

where j ¼ 12nx, k ¼ 12ny. The coefficients b1ðj; kÞ2b5ðj; kÞ are only dependent on the
geometry of the flow passage and the physical characteristics of the fluid, and their
definitions are given in Appendix A.
If the quantities of Dpðj þ 1; kÞ and Dpðj � 1; kÞ are assumed to be known, and a new

coefficient dðj; kÞ is defined by

dðj; kÞ ¼ b3ðj; kÞDpðj þ 1; kÞ þ b4ðj; kÞDpðj � 1; kÞ þ b5ðj; kÞ; ð26Þ
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equation (25) is expressed as

Dpðj; kÞ ¼ b1ðj; kÞDpðj; k þ 1Þ þ b2ðj; kÞDpðj; k� 1Þ þ dðj; kÞ: ð27Þ

Equation (27) is a tri-diagonal-matrix (TDM), and can be solved by tri-diagonal-matrix
algorithm (TDMA); see Patanker (1980). Calculating equation (27) with respect to j from
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1 to nx, we can obtain the pressures for all grid points. Repeating this calculation
until

Pnx
j¼1

Pny
k¼1 jDpð1Þðj; kÞ � Dpð0Þðj; kÞjPnx
j¼1

Pny
k¼1 jDpð1Þðj; kÞj

	 e ð28Þ

is satisfied, we finally obtain the fluid pressure in the annular flow passage. In equation
(28), e is a given value for judging convergence, and the superscripts (0) and (1) represent
the previous and current calculation results, respectively.

2.4. Unsteady Fluid Force

The amplitude of the unsteady fluid force Df ðj; kÞ acting on the grid(j; k) in the direction
E shown in Figure 1 can be obtained by means of multiplying the pressure Dpðj; kÞ by the
area of the grid, such as

Df ðj; kÞ ¼ �lxlyDpðj; kÞ cosðpxjÞ; ð29Þ

further, the amplitude of the moment Dmðj; kÞ due to the unsteady fluid force around the
rotational pivot for the grid(j; k) can be obtained by

Dmðj; kÞ ¼ ðyk � lpÞDf ðj; kÞ; ð30Þ

where lx and ly are the dimensionless boundary lengths of grid(j; k) in the X- and Y-
direction, respectively, and xj and yk are the X- and Y coordinates of point (j; k),
respectively.
To express the unsteady fluid force in the terms proportional to the acceleration,

velocity and displacement of the vibration of the inner cylinder, the pressures and the
coefficients in equation (25) are expressed in complex form, i.e.,

Dp ¼ DpRe þ iDpIm; ð31Þ

bi ¼ biRe þ ibiIm; ð32Þ

where i ¼ 125, and subscripts Re and Im represent real and imaginary parts of the
complex variables, respectively. After complex manipulations have been carried out on
equation (25), and arranging the result into the terms of proportional to ðiÞ2, ðiÞ1 and ðiÞ0,
we obtain

Dpðj; kÞ ¼ fb1Imðj; kÞDpImðj þ 1; kÞ þ b2Imðj; kÞDpImðj � 1; kÞ

þ b3Imðj; kÞDpImðj; k þ 1Þ þ b4Imðj; kÞDpImðj; k � 1ÞgðiÞ2

þ fb1Reðj; kÞDpImðj þ 1; kÞ þ b1Imðj; kÞDpReðj þ 1; kÞ

þ b2Reðj; kÞDpImðj � 1; kÞ þ b2Imðj; kÞDpReðj � 1; kÞ

þ b3Reðj; kÞDpImðj; k þ 1Þ þ b3Imðj; kÞDpReðj; k þ 1Þ

þ b4Reðj; kÞDpImðj; k � 1Þ þ b4Imðj; kÞDpReðj; k � 1Þ þ b5Imðj; kÞgðiÞ

þ fb1Reðj; kÞDpReðj þ 1; kÞ þ b2Reðj; kÞDpReðj � 1; kÞ

þ b3Reðj; kÞDpReðj þ 1; kÞ þ b4Reðj; kÞDpReðj � 1; kÞ þ b5Reðj; kÞg: ð33Þ
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Then, substituting equation (29) into (33), we define the added inertia coefficient
ma;f ðj; kÞ, the added damping coefficient ca;f ðj; kÞ and the added stiffness coefficient ka;f ðj; kÞ
as

ma;f ðj; kÞ ¼ lxlyfb1Imðj; kÞDpImðj þ 1; kÞ

þ b2Imðj; kÞDpImðj � 1; kÞ þ b3Imðj; kÞDpImðj; kþ 1Þ

þ b4Imðj; kÞDpImðj; k� 1Þg cosðpxjÞ=ððDe þ DfÞo2Þ; ð34Þ

ca;f ðj; kÞ ¼ lxly b1Reðj; kÞDpImðj þ 1; kÞ þ b1Imðj; kÞDpReðj þ 1; kÞf

þ b2Reðj; kÞDpImðj � 1; kÞ þ b2Imðj; kÞDpReðj � 1; kÞ

þ b3Reðj; kÞDpImðj; k þ 1Þ þ b3Imðj; kÞDpReðj; k þ 1Þ

þ b4Reðj; kÞDpImðj; k � 1Þ þ b4Imðj; kÞDpReðj; k � 1Þ

þb5Imðj; kÞgcosðpxjÞ=ððDe þ DfÞoÞ; ð35Þ

ka;f ðj; kÞ ¼ lxly bIReðj; kÞDpReðj þ 1; kÞf

þ b2Reðj; kÞDpReðj � 1; kÞ þ b3Reðj; kÞDpReðj þ 1; kÞ

þb4Reðj; kÞDpReðj � 1; kÞ þ b5Reðj; kÞgcosðpxjÞ=ðDe þ DfÞ; ð36Þ

where subscript a represents added, and ‘‘f ’’ represents fluid force, respectively. Then, we
obtain the unsteady fluid force as

Df ðj; kÞ ¼ �ðioÞ2ma;f ðDe þ DfÞ � ðioÞca;f ðDe þ DfÞ � ka;f ðDe þ DfÞ: ð37Þ

To combine the fluid force with the equation of motion of the inner cylinder, we express
the unsteady fluid force in a form in which the translational and rotational components are
separated, i.e.,

Df ðj; kÞ ¼ Df tðj; kÞ þ Df rðj; kÞ ð38Þ

or

Df ðj; kÞ ¼ �lxlyDptðj; kÞcosðpxjÞ � lxlyDprðj; kÞcosðpxjÞ; ð39Þ

where superscripts ‘‘t’’ and ‘‘r’’ denote translational and the rotational vibrations,
respectively. As presented in Section 2.3, the basic equations are linearized with respect to
the amplitudes of the translational and rotational motion. Therefore, it is easy to
obtain the translational component Dptðj; kÞ by taking DF ¼ 0 and the rotational
component Dprðj; kÞ by taking DE ¼ 0 in equation (25). As the result, equation (37) is
written as

Df ðj; kÞ ¼ � ðioÞ2mt
a;fDe � ðioÞct

a;fDe � kt
a;fDe

� ðioÞ2mr
a;fDf� ðioÞcr

a;fDf� kr
a;fDf: ð40Þ

Substituting equation (40) into (30), we obtain the moment due to the unsteady fluid force
as

Dmðj; kÞ ¼ ðyk � lpÞf�ðioÞ2mt
a;fDe � ðioÞct

a;fDe � kt
a;fDeg

þ ðyk � lpÞf�ðioÞ2mr
a;fDf� ðioÞcr

a;fDf� kr
a;fDfg ð41Þ



D.-W. LI, S. KANEKO AND S. HAYAMA918
According to the definitions in equation (19), equation (11) can be written as

eðt0Þ

fðt0Þ

( )
¼

De

Df

( )
expðiot0Þ; ð42Þ

where e ¼ E=H0, f ¼ FL=H0 and t0 ¼ t=t0. Integrating equations (40) and (41) from
j ¼ 12nx, and k ¼ 12ny, and considering equation (42), we obtain the unsteady fluid
force and the moment due to the unsteady fluid force acting on the inner cylinder in the
direction E and around rotational pivot,

Fðt0Þ

Mðt0Þ

( )
¼ �

Mt
a;f Mr

a;f

Mt
a;m Mr

a;m

" #
.eeðt0Þ
.ffðt0Þ

( )
�

Ct
a;f Cr

a;f

Ct
a;m Cr

a;m

" #
’eeðt0Þ
’ffðt0Þ

( )

�
Kt

a;f Kr
a;f

Kt
a;m Kr

a;m

" #
eðt0Þ

fðt0Þ

( )
; ð43Þ

where

Mt
a;f Mr

a;f

Mt
a;m Mr

a;m

" #
¼

Pnx
j¼1

Pny
k¼1m

t
a;f ðj; kÞ

Pnx
j¼1

Pny
k¼1m

r
a;f ðj; kÞPnx

j¼1

Pny
k¼1 ðyk � lpÞmt

a;f ðj; kÞ
Pnx

j¼1

Pny
k¼1 ðyk � lpÞmr

a;f ðj; kÞ

" #
; ð44Þ

Ct
a;f Cr

a;f

Ct
a;m Cr

a;m

" #
¼

Pnx
j¼1

Pny
k¼1 c

t
a;f ðj; kÞ

Pnx
j¼1

Pny
k¼1 c

r
a;f ðj; kÞPnx

j¼1

Pny
k¼1 ðyk � lpÞct

a;f ðj; kÞ
Pnx

j¼1

Pny
k¼1 ðyk � lpÞcr

a;f ðj; kÞ

" #
; ð45Þ

Kt
a;f Kr

a;f

Kt
a;m Kr

a;m

" #
¼

Pnx
j¼1

Pny
k¼1 k

t
a;f ðj; kÞ

Pnx
j¼1

Pny
k¼1 k

r
a;f ðj; kÞPnx

j¼1

Pny
k¼1 ðyk � lpÞkt

a;f ðj; kÞ
Pnx

j¼1

Pny
k¼1 ðyk � lpÞkr

a;f ðj; kÞ

" #
; ð46Þ

2.5. Equation of Motion of Inner Cylinder Coupled with Fluid Force

Substituting equation (43) into (10) after considering the dimension in equation (43), and
introducing the dimensionless parameters

Ot
n ¼

ffiffiffiffiffiffiffi
Kt

s

Ms

s
; Or

n ¼

ffiffiffiffiffiffi
Kr

s

Is

r
; OR ¼

Or
n

Ot
n

; MR ¼
Is

L2Ms
;

ld ¼
Lg � Lp

L
; t ¼ Or

nt; 2zts ¼
Ct

s

MsOt
n

; 2zrs ¼
Cr

s

IsOr
n

;

fn ¼
Or

n

2p
; n ¼

O
Or

n

; qr ¼
%QQ

fnLH0
; mm ¼

ðH0=LÞ
2Ms

2rpRmLH0
; ð47Þ
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we obtain the dimensionless equation of motion coupled with the fluid force as
follows:

M11 M12

M21 M22

" #
.eeðtÞ
.ffðtÞ

( )
þ

C11 C12

C21 C22

" #
’eeðtÞ
’ffðtÞ

( )
þ

K11 K12

K21 K22

" #
eðtÞ

fðtÞ

( )
¼

0

0

( )
; ð48Þ

where

M11 M12

M21 M22

" #
¼

1 ld

ld MR

" #
þ
1

mm

Mt
a;f Mr

a;f

Mt
a;m Mr

a;m

" #
; ð49Þ

C11 C12

C21 C22

" #
¼

2zts
1

OR
0

0 2zrsMR

2
4

3
5þ

qr

2pmm

Ct
a;f Cr

a;f

Ct
a;m Cr

a;m

" #
; ð50Þ

K11 K12

K21 K22

" #
¼

1

O2R
0

0 MR

2
64

3
75þ

q2r
4p2mm

Kt
a;f Kr

a;f

Kt
a;m Kr

a;m

" #
: ð51Þ

2.6. Critical Flow Rate

According to the definitions in equation (47), equation (11) may be written as

eðtÞ

fðtÞ

( )
¼

De

Df

( )
expðintÞ: ð52Þ

Substituting equation (52) into (48), we have

K11 K12

K21 K22

" #
� n2

M11 M12

M21 M22

" # !
De

Df

( )
þ ðinÞ

K11 K12

K21 K22

" #
De

Df

( )
¼

0

0

( )
: ð53Þ

From the real and imaginary parts of equation (53), we obtain two equations:

K11 K12

K21 K22

" #
� n2

M11 M12

M21 M22

" # !
De

Df

( )
¼

0

0

( )
; ð54Þ

C11 C12

C21 C22

" #
De

Df

( )
¼

0

0

( )
ð55Þ

Consequently, the eigenvalue equation is obtained from equation (54), namely

K11 � lM11 K12 � lM12

K21 � lM21 K22 � lM22

�����
����� ¼ 0; ð56Þ

where l ¼ n2. It is known from the definitions ofMi;j, Ci;j and Ki;j that equations (54)–(56)
are functions of the frequency ratio n and the dimensionless flow rate qr. For a given flow
rate qr, two eigenvalues, l1 and l2, can be obtained from eigenvalue equation (56).
If an imaginary eigenvalue is obtained, the inner cylinder will be subject to a divergence

instability. In that case, the fluid stiffness becomes negative, and the fluid force overcomes
the structural stiffness; consequently, the inner cylinder will stick to the wall of the duct. If
real eigenvalues are obtained, the following two cases are considered. One is that of
positive fluid damping. In this case, the inner cylinder will be stable, and flutter instability
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will not occur. The other case is that of negative fluid damping. In this case, the inner
cylinder will be unstable, and a flutter instability will occur when the fluid damping
because greater than the structural damping.
In this study, we consider flutter instability, and assume that two real eigenvalues lj

(j ¼ 1; 2) are obtained. Then, the amplitude ratio AR;j of translational and rotational
motions can be obtained from equation (54), such as

AR;j ¼
De

Df

� �
j

¼ �
K12 � ljM12

K11 � ljM11
; ð57Þ

where j ¼ 1; 2. By using AR;j, the vector fDe=Dfgj can be expressed as DfjfAR;jg.
Consequently, by premultiplying equation (54) by vector fAR;j1g equation (55) becomes

fAR;j1g
C11 C12

C21 C22

" #
j

AR;j

1

( )
¼ 0: ð58Þ

Substituting equation (50) into (58), we obtain the following expression:

ðA2R;jC
t
a;f þ AR;jC

r
a;f þ AR;jC

t
a;m þ Cr

a;mÞqr þ 2 A2R;jz
t
s

1

OR
þ zrsMR

� �
2pmm ¼ 0: ð59Þ

If the fluid damping coefficient gj , related to the flow rate, is defined as

gj ¼ �
1

Mj
ðA2R;jC

t
a;f þ AR;jC

r
a;f þ AR;jC

t
a;m þ Cr

a;mÞqr; ð60Þ

and the mass-damping coefficient dr;j, related to the flow rate, is defined as

dr;j ¼
2

Mj
A2R;jz

t
s

1

OR
þ zrsMR

� �
2pmm; ð61Þ

where

Mj ¼ AR;j 1
� � M11 M12

M21 M22

" #
j

AR;j

1

( )
; ð62Þ

we finally obtain the critical condition for equation (55) as

gj ¼ dr;j ð63Þ

If gj5dr;j , the system is stable; otherwise, the system is unstable.
The critical flow rate can be obtained by solving the coupled equations (56) and (63).

The calculation approach is as follows. First, the eigenvalues lj (or nj) for a given flow rate
qr are calculated from equation (56). Second, the fluid damping coefficients gj and the
mass-damping coefficients dr;j are calculated from equations (61) and (62) by using lj (or
nj) obtained previously. Third, the fluid damping coefficient gj is compared with the mass
damping coefficient dr;j. If gj5dr;j, increase the flow rate, then repeat the previous
calculations until gj 
 dr;j. The flow rate where the fluid damping coefficient gj undergoes
a change from gj5dr;j to gj 
 dr;j is called the critical flow rate, and denoted by qr;j;c.
Figure 5 shows two different cases of gj as a function the flow rate qr. When the added
damping coefficient is positive, gj decreases with increasing flow rate (the open symbols),
and the system is stable; no instability will occur with increasing flow rate. When
added damping coefficient is negative, gj increases with flow (the filled symbols), and the
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system is unstable; flutter instability occurs when the flow rate is greater than the critical
flow rate.

3. EXPERIMENT

3.1. Experimental Apparatus

Figure 6 shows the experimental apparatus, and Figure 7 shows the test-section of the
annular leakage-flow system. The experimental apparatus consists of a blower, a tributary
valve, a flow meter and a manometer, an X-Y table, a sensor transformer, an
oscillographic recorder, an air tank, and the test-section of the annular leakage-flow
system. The test-section consists of an inner cylinder supported by a pair of plate springs, a
fixed duct fixed at the air tank, and a shaft to fix the plate springs. The inner cylinder is
inside the duct, forming an annular flow passage. The length and the radius of the inner
cylinder are Lc and Rc, respectively, and the length and the radius of the duct are Ld and
Rd , respectively. The length of the flow passage L is equal to the length Ld . The shaft is
fixed on the X-Y table, to determine the central position of the inner cylinder inside the
duct and to adjust the eccentricity of the annular flow passage. A pair of gap sensors is
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Figure 7. Test-section. 1: Inner cylinder; 2: duct; 3: plate spring; 4: gap sensor; 5: shaft.
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installed on the upstream and downstream side of the shaft to measure the translational
and rotational vibrations of the inner cylinder.

3.2. Method of Experimental Procedure

The working fluid (air) is driven by the blower to produce the fluid flow in the annular
passage of the test-section. The flow rate is controlled by the tributary valve, and measured
with a flow meter and a manometer. The flow rate is increased step by step, and several
minutes are allowed at each flow rate to observe whether the amplitude of vibration of the
inner cylinder grows with time. In this experiment, the flow rate was incremented in 0.1 ‘/s.
The flow rate Q is calculated by

Q ¼ 0:158
m20
m

� �
P;

m20
m

� �
¼
380þ T

400
�

293

273þ T

� �3=2
; ð64Þ

where the units of the flow rate are litres/second (‘/s); P is the pressure with the unit
(mmH2O) measured by the manometer, and T is the temperature in the laboratory. If the
amplitude is very small and does not grow with time, the flow rate is increased to the next
step, until the amplitude begins to grow with time. Meanwhile, the signals from the
transformer, generated by the two sensors fixed on the shaft, are recorded by the
oscillographic recorder, and the signals are observed on the monitor. Then, the vibration
of the inner cylinder is divided into translational and rotational components by adding
and substracting the signals from the upstream and downstream sensors. Figure 8 shows
two examples of the vibration signal recorded in the experiment. In the figure, channel 1
(Ch1) shows the signal from the upstream sensor, and channel 2 (Ch2) the signal from the
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Figure 8. Time traces of vibration recorded in the experiment: Ch1, signal from upstream sensor; Ch2, signal
from downstream sensor; Ch3=Ch1+Ch2, translational component; Ch4=Ch1�Ch2, rotational component.
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downstream sensor. Channel 3 (Ch3) shows the translational component of vibration,
obtained by adding the upstream and downstream signals. Channel 4 (Ch4) shows the
rotational component of vibration, obtained by subtracting the upstream signal from the
downstream signal. The frequency and the amplitude ratio are measured from the
translational and rotational components. Figure 9 shows the variation of the amplitudes
with increasing of the flow rate. The critical flow rate is defined as the flow rate where the
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amplitude grows sharply. The specifications of the equipment used in the experiment are
summarized in Table 1.
The method of changing the eccentricity is as follows. First, the inner cylinder is moved

forward and backward with the X-Y table in the direction X (or Y) to determine the
central position in the direction concerned. Second, after fixing the inner cylinder at the
central position in that direction, the inner cylinder is moved forward and backward in the
other of the two directions to determine the central position in that other direction. After
the central position of the inner cylinder is determined in both directions, the eccentricity is
adjusted by means of moving the inner cylinder with the X-Y table.
The dynamic parameters of the inner cylinder are determined as follows. The mass Ms

of the inner cylinder is determined by measurement. The moment of inertia Is of the inner
cylinder around the pivot is calculated from its geometry. The natural frequencies Ot

n and
Ot

n, and the damping ratios z
t
n and z

r
n are calculated from the decaying dynamic response of

the inner cylinder after hitting it lightly. The values of Ot
n, O

t
n, z

t
n and zrn are determined as

average values from three tests. The dynamic parameters are listed in Table 2.
Table 3

Geometry of the inner cylinders

Symbol (unit) Cylinder 1 Cylinder 2

Rc (mm) 30�0 30�0
Lc (mm) 120�0 120�0
Lp (mm) 50�0 50�0
Lg (mm) 50�0 60�8

Table 2

Dynamic parameters of the inner cylinders

Symbol (unit) Cylinder 1 Cylinder 2

Ms � 103 (kg) 381�5 459
Is � 105 (kgm

2) 77�6 111
Ot

n (rad/s) 133�26 117�52
Or

n (rad/s) 81�25 63�86
ztn � 10

3 5�61 5�2
zrn � 10

3 0�796 1�62

Table 1

Specifications of equipment used in the experiment

Characteristics Manometer Laminar
flow-meter

Gap-sensor and
transformer

Oscillographic
recorder

Model DP-200A LFE-10B AEC-55MS-M OR-1400
Resolution rate 0�1mmH2O K20=0�158* 1�2 mm }
A/D resolution rate } } } 12 bit
Sample rate } } } 0�1–100 kHz
Measurement range 0–200mmH2O 0–10 l/s 0–3�0mm 0�05–50V
Precision  0�2%  0�2% linearity  0�5% }



Table 4

Geometry of the ducts

Duct no. Rd (mm) Ld (mm) j (deg)

1 32�0 100�0 0
2 32�0 100�0 1
3 32�0 100�0 2
4 32�0 100�0 3
5 32�0 100�0 4
6 32�0 100�0 5

Table 5

Parameters used in the calculations

Symbol Value Symbol Value

nx 9 ny 16
De 0�1 Df 0�1
xin 0 xout 0
r (kg/m3) 1�2 nk (m

2/s) 1�5� 10�5

ANNULAR LEAKING - FLOW - INDUCED VIBRATIONS 925
4. RESULTS AND DISCUSSIONS

The experiments have been carried out with 12 different test-sections involving two inner
cylinders and six ducts. The geometry of the inner cylinder and the duct is listed in Tables 3
and 4. The difference between cylinders 1 and 2 is that a weight is added at the end of
cylinder 2 to shift the center of gravity downstream, as shown in Figure 7. In addition, the
eccentricity for some test-sections is also changed from 0 to 0�5 to investigate the influence
of eccentricity on stability. The flow rate in the experiment is changed from 0 to 10 ‘/s,
0�1 ‘/s increment 3.
The calculation procedure is as follows. The flow rate is changed from 0 to 10 ‘/s, in

0�1 ‘/s steps. The dynamic parameters, the geometry and the calculation parameters are as
listed in Tables 1–5.

4.1. Influence of Passage Increment Ratio

To investigate the influence of the passage shape on stability, the calculation and the
experiment are carried out for several test-sections with different taper angle j. The critical
flow rate is plotted against j in Figure 10. The graphs (a), (b) and (c) are for inner cylinder
1, and the (d), (e) and (f) are for inner cylinder 2.
As shown in Figure 10, the calculated result shows that no instability exists (Qc ! 1) is

obtained at j ¼ 0o for both cylinder 1 and 2, whereas there exists a critical flow rate when
the taper angle j > 1o approximately. Furthermore, the critical flow rate Qc decreases
sharply with increasing taper angle at about j ¼ 1o. The experimental results broadly
agree. When the flow rate increased to a certain value (the critical flow rate), a flutter
instability was observed for ducts with taper angle j ¼ 1o to 58; but no flutter was
observed for a taper angle of j ¼ 0o for experimental flow rates 0–10 ‘/s. Thus, both
calculated and experimental results indicate that the fluid damping acting on the inner
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cylinder may be negative for divergent annular passages, and that a flutter instability will
be generated when the flow rate is greater than the critical flow rate.
Both the calculated and experimental results show that the frequency ratio n1 is close to

1 for both inner cylinders 1 and 2, and the frequency ratio n2 is close to 1�6 for cylinder 1
and 1.8 for cylinder 2. According to the definition of frequency ratio n ¼ O=Or

n and the
values of Ot

n and Or
n in Table 1, we know that the frequency of the flutter instability

corresponding to the first eigenvalue is close to the natural frequency of rotational
vibration without fluid flow; that corresponding to the second eigenvalue is close to the
natural frequency of translational vibration without fluid flow. This implies that the effect
of the fluid flow on the flutter frequency is small enough to be neglected when air is used as
the working fluid.
The calculated results show that the amplitude ratio De=Df for the frequency ratio

n1 is nearly equal to 0 for both inner cylinders 1 and 2, while for the frequency ratio n2,
the amplitude ratio De=Df is over about 50 for cylinder 1 and nearly equal to
�1.5 for cylinder 2. This indicates that the unstable vibration corresponding to the first
eigenvalue is close to the rotational vibration mode for both cylinders. Similarly, the
unstable vibration corresponding to the second eigenvalue is close to the translational
mode for inner cylinder 1, and to the coupled translational and rotational modes for
inner cylinder 2. Also, the negative amplitude ratio De=Df indicates that the phase
differs by 180o between translational and rotational vibrations. The experimental
results agree.
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4.2. Influence of Eccentricity

To investigate the influence of eccentricity on stability, calculations and experiments hve
been carried out for different eccentricities. The critical flow rate is plotted against the
eccentricity %ee in Figure 11; graphs (a) and (b) are for inner cylinder 1, and (c) and (d) for
inner cylinder 2.
For all cases, the calculated results shows that the critical flow rate decreases with

increasing eccentricity, and this agrees with the results obtained in the experiments. This
implies that eccentricity has a destabilizing effect for systems with divergent annular
passages.

4.3. Availability of Calculation

As seen in Figures 10 and 11, the agreement between calculated and experimental results
for inner cylinder 2 is not as good as for inner cylinder 1. However, it is not clear why the
precision of the calculation deteriorates for cylinder 2. The following facts may be
considered to explain the reason why.
The turbulence of the flow at the inlet part of the passage is not considered in this

theory. However, the sharp edges at the inlet and the outlet may cause pressure losses and
turbulence in the flow. These different conditions between the calculation and the
experiment will cause a deterioration of the accuracy of the calculation. Besides, flow
separation from the wall of the passage is not considered in the theory. However, it may
take place when the passage increment ratio a is large enough. As separation of the flow
takes place, radial flow should not be neglected, and the effect of neglecting it is not yet
known. These effects become more important with increasing flow rate. Furthermore, the
critical flow rate for inner cylinder 2 is higher than that for cylinder 1 as shown in Figures
10 and 11. Therefore, this may be the reason of the worse calculation precision for cylinder
2 compared to inner cylinder 1.
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In addition, the circumferential steady flow is neglected in this study, i.e., %QQX ¼ 0.
However, such flow might be generated when eccentricity exists between the inner cylinder
and the duct. Moreover,the circumferential steady flow will increase with eccentricity, as
well as with increasing flow rate. This may be another reason for the deterioration of
prediction for cylinder 2.
It is known from the above discussion that (i) the passage should not be too short in

order to neglect turbulence in the flow at the inlet part of the passage, (ii) the passage
increment ratio should not be too large, to allow neglecting flow separation from the wall
of the passage, and (iii) the eccentricity should not be too large, to permit neglecting the
circumferential steady flow. The influence of geometry on the calculation precision needs
to be studied further.

5. CONCLUSIONS

A numerical method is developed to study flutter instability of annular leakage-flow-
induced translational and rotational two-degree-of-freedom vibrations, and the validity of
the method is tested by a series of experiments. The main conclusions of this study are
summarized as follows
(i) The method developed in this paper is suitable for the study of flutter instability in

annular leakage-flow-induced vibration.
(ii) A divergent annular passage may cause a negative fluid damping, and a flutter

instability will thus be generated when the flow rate is greater than the critical flow rate.
(iii) The air-flow has no substantial influence on the flutter frequency.
(iv) The system is destabilized as the eccentricity of the annular flow passage is

increased.
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APPENDIX A:

The coefficients b1ðj; kÞ2b5ðj; kÞ in equation (24)

b0ðj; kÞ ¼
lx

a1ðj; kÞ
þ

lx

a1ðj; k � 1Þ
þ

lyLR

a2ðj; kÞ
þ

lyLR

a2ðj � 1; kÞ
;

b1ðj; kÞ ¼
1

b0ðj; kÞ
lx

a1ðj; kÞ
; b2ðj; kÞ ¼

1

b0ðj; kÞ
lx

a1ðj; k � 1Þ
;

b3ðj; kÞ ¼
1

b0ðj; kÞ
lyLR

a2ðj; kÞ
; b4ðj; kÞ ¼

1

b0ðj; kÞ
lyLR

a2ðj � 1; kÞ
;

b5ðj; kÞ ¼
1

b0ðj; kÞ
lx
a3ðj; kÞ
a1ðj; kÞ

� lx
a3ðj; k � 1Þ
a1ðj; k � 1Þ

þ a4ðj; kÞ
� �

;

where

a1ðj; kÞ ¼
lyðb� 2aÞ

2

1

%hh
3
ðj; kÞ

þ
1

%hh
3
ðj; kþ 1Þ

 !
þ ðioÞ

ly

2

1

%hhðj; kÞ
þ

1

%hhðj; kþ 1Þ

� �
;

a2ðj; kÞ ¼
lxðb� aÞ
2LR

1

%hh
3
ðj; kÞ

þ
1

%hh
3
ðj þ 1; kÞ

 !
þ ðioÞ

lx

2LR

1

%hhðj; kÞ
þ

1

%hhðj þ 1; kÞ

� �
;

a3ðj; kÞ ¼
ly

2
3ðb� aÞ

1

%hh
4
ðj; kÞ

þ
1

%hh
4
ðj; k þ 1Þ

 !
De

(
þ 3ðb� aÞ

ðyk � lpÞ

%hh
4
ðj; kÞ

þ
ðykþ1 � lpÞ

%hh
4
ðj; k þ 1Þ

 !
Df;

þ
1

%hh
3
ðj; kÞ

þ
1

%hh
3
ðj; k þ 1Þ

 !
Df

)
cosðpxjÞ þ ðioÞ

ly

2

1

%hh
2
ðj; kÞ

þ
1

%hh
2
ðj; k þ 1Þ

 !(
De

þ
ðyk � lpÞ

%hh
2
ðj; kÞ

þ
ðykþ1 � lpÞ

%hh
2
ðj; k þ 1Þ

 !
Df

)
cosðpxjÞ;

a4ðj; kÞ ¼ 0þ ðioÞlxlyfDe þ ðyk � lpÞDfg cosðpxjÞ;

and at the inlet and outlet of the passage

a1ðj; 0Þ ¼
ð1þ xinÞ
%hh
2
ðj; 1Þ

; a3ðj; 0Þ ¼
ð1þ xinÞ
%hh
3
ðj; 1Þ

ðDe þ ðy1 � lpÞDfÞ cosðpxjÞ;

a1ðj; nyÞ ¼
xout

%hh
2
ðj; nyÞ

; a3ðj; nyÞ ¼
xout

%hh
3
ðj; nyÞ

ðDe þ ðyny � lpÞDfÞ cosðpxjÞ;

APPENDIX B: NOMENCLATURE

E translational displacement of the inner cylinder
%EE; %ee ð¼ %EE=H0Þ eccentric distance and eccentricity of the inner cylinder
qr dimensionless flow rate
H0ð¼ Rd � RcÞ mean clearance at the inlet of the flow passage
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H clearance at any position of the flow passage
L length of the annular flow passage
Lc length of the inner cylinder
Ld length of the duct (L ¼ Ld)
Lg distance from the inlet to the center of gravity
Lp distance from the inlet to the pivot of rotation
lx; ly lengths of the grid in X-direction and Y-direction
nx; ny numbers of deviation of the passage in X-direction and Y-direction
Pin;Pout pressures at just before and just after passage
Rc radius of the inner cylinder
Rd radius of the duct at the inlet of the passage
Rmð¼ ðRd þ RcÞ=2Þ mean radius of the annular passage at the inlet
QX ;QY flow rates per unit width in the circumferential and axial directions
t time
U;V ;W flow velocities in the directions of X-axis, Y-axis and Z-axis
a passage increment ratio
y angle from the symmetric plane to any point
lð¼ v2Þ eigenvalue
vð¼ O=Or

nÞ frequency ratio
nk kinetic viscosity of fluid
xin, xout pressure loss factors at the inlet and the outlet of the passage
r fluid density
O angular frequency of the inner cylinder around the rotational pivot
F angular displacement of the inner cylinder
j taper angle of the duct


	1. INTRODUCTION
	2. THEORY
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

	3. EXPERIMENT
	Figure 7
	Figure 8
	Figure 9
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5

	4. RESULTS AND DISCUSSIONS
	Figure 10
	Figure 11

	5. CONCLUSIONS
	REFERENCES
	APPENDIX A:
	APPENDIX B: NOMENCLATURE

